久久人妻少妇嫩草AV_69堂亚洲国产日韩精品无码专区成人妻中文字幕一区二区三区在线久久久久_国模无码大尺度一区二区三区

Fluorescent Optical Fiber Temperature Measurement Solution for Power Contact in Power Grid Industry

Fluorescent Optical Fiber Temperature Measurement Solution for Power Contact in Power Grid Industry

1. Systematic Introduction

Transformers, switchgears, large motors and other high-voltage electrical equipment are the key equipment of power generation and transmission and transformation systems. Their safety, reliability and service life are crucial to the safe and reliable operation and life of the entire transmission and transformation system. Most of these high-voltage equipment are enclosed structure. They work in the environment of high voltage, high current and strong magnetic field for a long time. Some joints are heated due to aging or excessive contact resistance, which results in heat accumulation. Heating temperature rise increases the loss of power transmission system. If the heat dissipation is not good, it will endanger the normal operation of equipment, even cause faults. The adverse social impact and economic losses are immeasurable.

Taking transformer as an example, the accident rate of distribution transformer in operation is about 13%, in which the insulation aging is caused by the over temperature operation of windings, and the burnout and breakdown accidents of transformer windings account for a considerable proportion. In addition, many physical and chemical changes (such as partial discharge and partial overheating) in power transformer will cause the temperature parameters of transformer to change, which makes the temperature rise track of transformer different from that of normal operation. Based on the relationship between the aging rate and temperature of transformer according to the "6°rule" , the life of transformer can be reduced by half when the aging rate increases by one time at 6℃, and the life of transformer can be prolonged by one time when the temperature decreases by 6℃. For transformers, winding temperature plays a decisive role in the aging of insulation materials, so it is particularly important to accurately measure the winding temperature of transformers. With the continuous improvement of the automation level of safe power consumption and distribution network, besides monitoring the electrical parameters, direct monitoring of hot-spot temperature of high-voltage electrical equipment such as transformer/switchgear/transformer/large motor can improve the safe operation of equipment, prolong the insulation life of equipment, instantly judge the actual load capacity of equipment, and maximize the potential of transformer transmission and transformation to improve the installation. The economic benefits of preparation are of great significance.

The applications of fluorescent optical fiber temperature sensor in smart grid are as follows:

1. Power transformer winding temperature monitoring;

2. High-voltage switchgear: It can measure the temperature of plum blossom contacts and static contacts in switchgear, and even bury them in the conductive connection of insulating cylinder;

3. Temperature measurement of arc extinguishing chamber of high voltage circuit breaker;

4. Temperature monitoring of stator, bush and end confluence ring of large motor;

5. Direct monitoring of hot spot temperature of high voltage equipment such as large motor/transformer windings;

6. Other electrical equipment temperature online real-time monitoring.

image.png

 

As one of the future development directions of optical fiber temperature sensor, fluorescent optical fiber temperature sensor for smart grid also has the following advantages:

1. Immunization to electromagnetism, radio frequency and microwave;

2. No metal parts, no magnetization;

3. The measurement accuracy is high and the stability is good;

4. Good reliability and repeatability;

5. Structural tightness, long service life;

6. No calibration is required.

Compared with traditional temperature sensors, optical fiber temperature sensors have incomparable advantages. With the maturity of optical fiber temperature sensor technology and the establishment of technical regulations and related standards, fluorescent optical fiber temperature sensors will gradually replace traditional temperature sensors and become one of the most important means of temperature monitoring in power grid.

Fluorescent optical fiber temperature sensor is one of the key equipment in future smart grids. Developing smart grid industry based on various smart sensors is the extension and expansion of developing green new energy industry in China. It is a realistic need to combine China's industrial base, accelerate the transformation and upgrading of power equipment manufacturing industry, adapt to future competition, and achieve sustainable development. It is an inevitable choice for the high-end market and technological commanding point of power grid industry to strive for greater development space. It is an effective way and carrier to accelerate the integration of industrialization and information technology. It has very important practical significance and long-term strategic significance for stimulating economic development, optimizing industrial structure and transforming development mode.

 

2. Technical Advantages

The comparison of several main temperature measurement methods in the field of electric power at present:

2.1 Infrared Thermal Imaging Temperature Measurement System

Advantages:

1. Non-contact temperature measurement, and easy to operate;

2. Low cost.

Disadvantages:

1. The measurement is inaccurate, only the surface temperature can be measured; the real temperature of the internal hot spot cannot be measured;

2. Handheld, and cannot achieve online monitoring;

3. Artificial inspection, increase labor costs, the minimum annual labor costs of more than 100,000 Yuan.

2.2 Wireless Temperature Measurement System

Advantages:

1. Easy installation;

2. Low cost.

Disadvantages:

1. Poor reliability, with battery measurement, short life;

2. The insulation performance of cabinet is affected, so it cannot pass the test;

3. The large volume of the sensor affects the heat dissipation function;

4. The surface temperature can only be measured, but the real temperature inside the hot spot cannot be measured.

2.3 Fiber Bragg Grating Temperature Measurement System

Advantages:

1. Quasi-distributed temperature measurement can be realized, which is suitable for long-distance and large-area areas;

2. With optical fiber technology, the insulation performance is good.

Disadvantages:

1. Difficult to install;

2. Cannot achieve a single cabinet matching, cannot achieve in-situ display.

2.4 Fluorescent Optical Fiber Temperature Measurement System

Advantages:

1. Its performance is safe and reliable, and it can achieve calibration-free, good consistency, interchangeability and stability;

2. Long service life, maintenance-free. Minimum use of optical fiber sensors for 25 years;

3. The probe is small in size and can be used to measure the hot spot in depth, so as to realize the real and effective monitoring of the hot spot;

4. Anti-electromagnetic interference, good insulation performance, integrated into intelligent switchgear and passed the type test;

5. It can be displayed locally and integrated into the control system conveniently.

6. Easy installation and flexible networking;

7. High cost performance ratio.

Disadvantages:

1. The measuring distance is relatively short, usually in the order of 100 meters.

For the node temperature measurement of electrical equipment in power plants and substations, Herch’s fluorescent optical fiber temperature measurement has obvious advantages: no electrical interference, small size, long life, independent networking, and high reliability.

 

3. System Characteristics

Guarantee the ideal isolation of primary and secondary power, good linearity and high accuracy;

Multichannel transmission: The information collected by the system can be uploaded and dispatched by FTU, GPRS or communication management unit in the box, and the transmission mode can be flexibly selected according to the field environment;

Do not reduce the safety level of electrical equipment: Temperature-measuring fluorescent optical fiber fire detector is small, 2.8mm in diameter, without any metal materials, electronic components, good insulation, 20cm withstands 100,000 volts voltage;

Full-year, all-weather security guardian: At least 25 years, 365 days a year, 24 hours a day real-time monitoring and analysis;

It reduces the blind area of monitoring and improves the safety of equipment: Positioning accuracy is 1 mm;

Cost savings: Directly installed in the temperature rise part, real-time recording and displaying monitoring point data to achieve unattended monitoring station objectives;

Maintenance basis is established: Fully grasp the operation of the equipment, can predict the aging of the equipment, so as to put forward the maintenance time and maintenance plan according to the operation status of the equipment;

Intelligent judgment: It can quickly judge and analyze the normal temperature, abnormal temperature and fire of the tested object.

 

4. Major Performance Indicators

image.png

image.png

 

5. Introduction of Main Components

The HQ series fluorescent optical fiber temperature monitoring system is selected as the on-line monitoring system for electric power connection in rail transit industry. A set of system is mainly composed of several optical fiber temperature sensors, a multi-channel optical fiber demodulator, monitoring host computer and human-machine exchange software.

5.1 HQ Series Fluorescent Fiber Temperature Demodulator

HQ series fluorescent optical fiber temperature demodulator receives real-time optical signal with temperature information from temperature-measuring fluorescent optical fiber fire detector, and demodulates it to temperature value to realize temperature measurement of monitored parts. When the actual measurement value is larger than the alarm setting value, the alarm signal sent out. They can work independently on a single computer, or can be used in multiple networking, and are suitable for application requirements of various scales.

5.2 Temperature-Measuring Fluorescent Optical Fiber Fire Detector

The probe size of temperature-measuring fluorescent fiber-optic fire detector is very small and can be directly installed at the measured point, which can measure temperature accurately and respond quickly. Its tail fiber is made of soft and strong special optical fiber, which has the advantages of high transmission bandwidth, stable signal, anti-electromagnetic interference, anti-flexure, high impact strength and fast connection.

The tail fiber sheath has the characteristics of high temperature resistance, aging resistance, corrosion resistance, high insulation, non-adherence and so on. It can adapt to the harsh environment of high voltage, high temperature, strong electromagnetic and so on.

5.3 Monitor Host

The monitoring host can receive and process the normal information, fault information and disaster information from the optical fiber temperature demodulator in real time, and quickly process and manage them. The monitoring host has the functions of fault monitoring, display, alarm and information exchange. At the same time, the remote monitoring can be realized through the network.

5.4 Men-Machine Interface

The main functions of the software system include real-time temperature local monitoring, real-time data remote monitoring, high/low temperature alarm, high/low temperature early warning, historical data playback, pre-alarm and post-alarm curve, temperature export to Excel and other functions.

6. Construction cases

Installation of monitoring host: The monitoring host of this system is installed in the monitoring cabinet of the substation control room, and a monitoring computer is set up in the central control station for remote monitoring.

Installation of HQ Series Optical Fiber Temperature Demodulator: The demodulator is installed on the back wall of the instrument panel in front of the switchgear to facilitate future maintenance.

image.png

image.png

Schematic Diagram of the Layout of the Switchgear in the HQ Series Fluorescent Optical Fiber Temperature Monitoring System

Installation of HQ-12 Temperature-measuring Fluorescent Optical Fiber Sensor

1. Installation on Switchgear Contacts

image.png

The main hotspot of switchgear is located at the joint of static and dynamic contacts, but this part is protected by insulating sleeve, and the space inside is very narrow. In order to measure the heating temperature of contacts more accurately, the diameter of HQ-12 temperature-measuring fluorescent optical fiber sensor is 2.8mm. It can extend into the inner of the sleeve from the rear of the sleeve along the confluence row. A high temperature resistant and high insulation installation clamp is designed specifically for the static contacts, which can fix the sensor firmly on the static contacts. 

When fixing the fluorescent optical fiber fire detector with a clamp, the sensor head is fixed in the fixed groove of the sensor first, and then the clamp and the sensor head are clamped on the cylinder of the static contact. During installation, the clamp is installed at the joint of the static contact and the bus bar to keep a safe distance from the movable contact.

2. Installation at Cable Joint of Switchgear

The fluorescent optical fiber fire detector for temperature measurement was pasted on the cable joint with special aviation silica gel and fixed with special strapping.

image.png

After the installation of the temperature-measuring fluorescent optical fiber fire detector is completed, the tail fibers are tied to the copper bars connected with the rear of the static contacts with insulating straps to prevent the temperature-measuring fluorescent optical fiber probe from hitting the adjacent contacts in case of falling off.

Inside Cabinet Wiring

In order not to affect the electrical distribution in the cabinet, as well as the future overhaul of the cabinet, cables and tail fibers in the cabinet should be as far as possible along the corner of the cabinet, or take a special trunk or bundle with the secondary cable in the cabinet.

image.png

HQ series transformer winding temperature measurement system, the optical fiber sensor probe is installed in winding coil in the process of transformer fabrication. Through flange penetrator, the internal and external optical signals are docked, and the temperature measurement host is analyzed and demodulated to realize real-time on-line temperature measurement.

Background communication: Real-time temperature data of field power equipment are uploaded to the backstage monitoring system through 485 parallel lines or optical cable transmission.

About insulation and anti-creeping: Temperature-measuring fluorescent optical fiber fire detector has high insulation, anti-creeping, anti-corrosion.

 

Attachment: Product Model

image.png

中国首条第七航权航线开通后首个航班抵三亚 开拓入境游新市场 卓创资讯:12月鸡蛋亏损逐步收窄 1月份有望回升至微利状态 罗俊杰:机械和钢铁两大产业应协同融合发展 认购近800倍仍破发,华芢生物-B上市首日跌逾11% 上海电信:WiFi速率不达标原因多样 公司将进行免费、专业的网络检测和维修服务|上海电信 欧洲央行管委Wunsch:如果展望实现 可以一段时间内维持利率不变 知情人士:多家顶级药企将下调部分药品美国售价 凌云光定增上会获通过 将于上交所上市 广汽丰田全新雷凌 L 上市:多种动力版本,12.98 万元起|广汽丰田|雷凌|马力 2025年国庆出境游市场火爆,平安万事达信用卡以全新权益伴您畅游全球 别让免密支付成为便捷陷阱 打造“苏品苏货”专区,汇通达网络“双十二”活动上线 威海银行,拟配股融资 5.4亿 | 香港上市公司.再融资|威海银行 “十五五”启航 擘画保险蓝图——“2025年度中国保险鼎峰50人论坛”成功举办 聊城-武汉纺织激光产业科技合作交流对接活动成功举办 快阅读时代,优质深度内容大有其“美” 华芢生物-B以下限定价 香港公开发售获791.95倍认购|华芢生物-B 万泰生物入围HPV疫苗国采:27.5元单价锁定放量空间,累计销量8000万剂 【盘中播报】安达智能盘中涨停|科创板 【国泰海通食饮】周报第44期:政策催化,消费转变可期|海通证券 不出意外!马云预言的2026年房价3大转变,或将逐步落地 2025招聘管理软件分析报告发布:北森一体化智能招聘,中大型企业招聘管理软件首选实至名归 工商银行违反多项规定 被罚没近4400万元|工商银行